
1

Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 12

Ravi Ramamoorthi

http://www.cs.ucsd.edu/~ravir

To Do

§  Assignment 2 due May 18
§  Should already be well on way.
§  Contact us for difficulties etc.

Motivation

§  Today, create photorealistic computer graphics
§  Complex geometry, lighting, materials, shadows
§  Computer-generated movies/special effects (difficult

or impossible to tell real from rendered…)

§  CSE 168 images from rendering competition (2011)

§  But algorithms are very slow (hours to days)

Real-Time Rendering

§  Goal: interactive rendering. Critical in many apps
§  Games, visualization, computer-aided design, …

§  Until 10-15 years ago, focus on complex geometry

§  Chasm between interactivity, realism

Evolution of 3D graphics rendering

Interactive 3D graphics pipeline as in OpenGL
§  Earliest SGI machines (Clark 82) to today
§  Most of focus on more geometry, texture mapping
§  Some tweaks for realism (shadow mapping, accum. buffer)

SGI Reality Engine 93
(Kurt Akeley)

Offline 3D Graphics Rendering

Ray tracing, radiosity, photon mapping
§  High realism (global illum, shadows, refraction, lighting,..)
§  But historically very slow techniques

“So, while you and your children’s children are waiting for ray tracing to take
over the world, what do you do in the meantime?” Real-Time Rendering

Pictures courtesy Henrik Wann Jensen

2

New Trend: Acquired Data

§  Image-Based Rendering: Real/precomputed images as input

§  Also, acquire geometry, lighting, materials from real world

§  Easy to obtain or precompute lots of high quality data. But
how do we represent and reuse this for (real-time) rendering?

15 years ago

§  High quality rendering: ray tracing, global illumination
§  Little change in CSE 168 syllabus, from 2003 to today

§  Real-Time rendering: Interactive 3D geometry with simple
texture mapping, fake shadows (OpenGL, DirectX)

§  Complex environment lighting, real materials (velvet, satin,
paints), soft shadows, caustics often omitted in both

§  Realism, interactivity at cross purposes

Today: Real-Time Game Renderings

Unreal Engine 4
https://www.youtube.com/watch?v=gtHamLNPXyk#t=33

Digital Ira: NVIDIA, USC

Today

§  Vast increase in CPU power, modern instrs (SSE, Multi-Core)
§  Real-time raytracing techniques are possible (even on

hardware: NVIDIA Optix)

§  4th generation of graphics hardware is programmable
§  (First 3 gens were wireframe, shaded, textured)
§  Modern NVIDIA, ATI cards allow vertex, fragment shaders

§  Great deal of current work on acquiring and rendering with
realistic lighting, materials… [Especially at UCSD]

§  Focus on quality of rendering, not quantity of polygons, texture

Goals

§  Overview of basic techniques for high-quality
real-time rendering

§  Survey of important concepts and ideas, but do
not go into details of writing code

§  Some pointers to resources, others on web

§  One possibility for assignment 3, will need to
think about some ideas on your own

Outline

§  Motivation and Demos

§  Programmable Graphics Pipeline

§  Shadow Maps

§  Environment Mapping

3

High quality real-time rendering
§  Photorealism, not just more polygons

§  Natural lighting, materials, shadows

 Interiors by architect Frank Gehry. Note rich lighting, ranging
from localized sources to reflections off vast sheets of glass.

High quality real-time rendering
§  Photorealism, not just more polygons

§  Natural lighting, materials, shadows

 Real materials diverse and not easy to represent by simple
parameteric models. Want to support measured reflectance.

Glass Vase
Glass Star (courtesy Intel) Peacock feather

High quality real-time rendering
§  Photorealism, not just more polygons

§  Natural lighting, materials, shadows

Natural lighting creates a mix of soft diffuse and hard shadows.

Agrawala et al. 00
small area light, sharp shadows soft and hard shadows

Ng et al. 03

Today: Full Global Illumination

Applications

§  Entertainment: Lighting design

§  Architectural visualization

§  Material design: Automobile industry

§  Realistic Video games

§  Electronic commerce

Programmable Graphics Hardware

4

Programmable Graphics Hardware

NVIDIA a new dawn demo (may need to type URL)
http://www.geforce.com/games-applications/pc-

applications/a-new-dawn/videos

Precomputation-Based Methods

§  Static geometry

§  Precomputation

§  Real-Time Rendering (relight all-frequency effects)

§  Involves sophisticated representations, algorithms

Relit Images

Ng, Ramamoorthi, Hanrahan 04

Video: Real-Time Relighting

Spherical Harmonic Lighting

Avatar 2010, based on Ramamoorthi and Hanrahan 01, Sloan 02

Interactive RayTracing

Advantages
§  Very complex scenes relatively easy (hierarchical bbox)
§  Complex materials and shading for free
§  Easy to add global illumination, specularities etc.

Disadvantages
§  Hard to access data in memory-coherent way
§  Many samples for complex lighting and materials
§  Global illumination possible but expensive

Modern developments: Leverage power of modern CPUs,
develop cache-aware, parallel implementations

https://www.youtube.com/watch?v=kcP1NzB49zU

5

Sparse Sampling, Reconstruction

§  Same algorithm as offline Monte Carlo rendering

§  But with smart sampling and filtering (current work)

Sparse Sampling, Reconstruction

Outline

§  Motivation and Demos

§  Programmable Graphics Pipeline

§  Shadow Maps

§  Environment Mapping

Basic Hardware Pipeline

Application Geometry Rasterizer

CPU GPU

Create geometry, lights,
materials, textures,
cubemaps, … as inputs

Transform and lighting calcs.
Apply per-vertex operations Textures, Cubemaps

Per-pixel (per-fragment)
operations

Geometry or Vertex Pipeline

Model, View
Transform Lighting Projection Clipping Screen

These fixed function stages can be replaced by a general per-vertex
calculation using vertex shaders in modern programmable hardware

Pixel or Fragment Pipeline

Rasterization
(scan conversion)

Texture
Mapping Z-buffering Framebuffer

These fixed function stages can be replaced by a general per-fragment
calculation using fragment shaders in modern programmable hardware

6

OpenGL Rendering Pipeline

Geometry
Primitive
Operations

Pixel
Operations

Scan
Conversion
(Rasterize)

Texture
Memory

Fragment
Operations

Fram
ebuffer

Vertices

Images

Traditional Approach: Fixed function pipeline (state machine)
New Development (2003-): Programmable pipeline

Programmable in
Modern GPUs
(Vertex Shader)

Programmable in
Modern GPUs
(Fragment
 Shader)

Simplified OpenGL Pipeline
§  User specifies vertices (vertex buffer object)

§  For each vertex in parallel
§  OpenGL calls user-specified vertex shader:

Transform vertex (ModelView, Projection), other ops

§  For each primitive, OpenGL rasterizes
§  Generates a fragment for each pixel the fragment covers

§  For each fragment in parallel
§  OpenGL calls user-specified fragment shader:

Shading and lighting calculations
§  OpenGL handles z-buffer depth test unless overwritten

§  Modern OpenGL is “lite” basically just a rasterizer
§  “Real” action in user-defined vertex, fragment shaders

Shading Languages

§  Vertex / Fragment shading described by small program

§  Written in language similar to C but with restrictions

§  Long history. Cook’s paper on Shade Trees,
Renderman for offline rendering

§  Stanford Real-Time Shading Language, work at SGI

§  Cg from NVIDIA, HLSL

§  GLSL directly compatible with OpenGL 2.0 (So, you can
just read the OpenGL Red Book to get started)

Shader Setup

§  Initializing (shader itself discussed later)

1.  Create shader (Vertex and Fragment)

2.  Compile shader

3.  Attach shader to program

4.  Link program

5.  Use program

§  Shader source is just sequence of strings

§  Similar steps to compile a normal program

Shader Initialization Code
GLuint initshaders (GLenum type, const char *filename) {

 // Using GLSL shaders, OpenGL book, page 679

 GLuint shader = glCreateShader(type) ;

 GLint compiled ;

 string str = textFileRead (filename) ;

 GLchar * cstr = new GLchar[str.size()+1] ;

 const GLchar * cstr2 = cstr ; // Weirdness to get a const char

 strcpy(cstr,str.c_str()) ;

 glShaderSource (shader, 1, &cstr2, NULL) ;

 glCompileShader (shader) ;

 glGetShaderiv (shader, GL_COMPILE_STATUS, &compiled) ;

 if (!compiled) {

 shadererrors (shader) ;

 throw 3 ;

 }

 return shader ;

}

Linking Shader Program
GLuint initprogram (GLuint vertexshader, GLuint fragmentshader)

{

 GLuint program = glCreateProgram() ;

 GLint linked ;

 glAttachShader(program, vertexshader) ;

 glAttachShader(program, fragmentshader) ;

 glLinkProgram(program) ;

 glGetProgramiv(program, GL_LINK_STATUS, &linked) ;

 if (linked) glUseProgram(program) ;

 else {

 programerrors(program) ;

 throw 4 ;

 }

 return program ;

}

7

Cliff Lindsay web.cs.wpi.edu/~rich/courses/imgd4000-d09/lectures/gpu.pdf Cliff Lindsay web.cs.wpi.edu/~rich/courses/imgd4000-d09/lectures/gpu.pdf

Fragment Shader Compute Lighting
vec4 ComputeLight (const in vec3 direction, const in vec4

lightcolor, const in vec3 normal, const in vec3 halfvec, const
in vec4 mydiffuse, const in vec4 myspecular, const in float
myshininess) {

 float nDotL = dot(normal, direction) ;

 vec4 lambert = mydiffuse * lightcolor * max (nDotL, 0.0) ;

 float nDotH = dot(normal, halfvec) ;

 vec4 phong = myspecular * lightcolor * pow (max(nDotH, 0.0),
myshininess) ;

 vec4 retval = lambert + phong ;

 return retval ;

}

Outline

§  Motivation and Demos

§  Programmable Graphics Pipeline

§  Shadow Maps

§  Environment Mapping

§  Discuss Assignment 2, due date

Shadow and Environment Maps
§  Basic methods to add realism to interactive rendering

§  Shadow maps: image-based way hard shadows
§  Very old technique. Originally Williams 78
§  Many recent (and older) extensions
§  Widely used even in software rendering (RenderMan)
§  Simple alternative to raytracing for shadows

§  Environment maps: image-based complex lighting
§  Again, very old technique. Blinn and Newell 76
§  Huge amount of recent work (some covered in course)

§  Together, give most of realistic effects we want
§  But cannot be easily combined!!
§  See Annen 08 [real-time all-frequency shadows dynamic

scenes] for one approach: convolution soft shadows

Common Real-time Shadow Techniques

Shadow
volumes

Light maps

Projected
planar
shadows

Hybrid
approaches

This slide, others courtesy Mark Kilgard

8

Problems

Mostly tricks with lots of limitations

§  Projected planar shadows
works well only on flat surfaces

§  Stenciled shadow volumes
determining the shadow volume is hard work

§  Light maps
totally unsuited for dynamic shadows

§  In general, hard to get everything shadowing everything

Shadow Mapping

§  Lance Williams: Brute Force in image space
(shadow maps in 1978, but other similar ideas like
Z buffer, bump mapping using textures and so on)

§  Completely image-space algorithm
§  no knowledge of scene’s geometry is required
§  must deal with aliasing artifacts

§  Well known software rendering technique
§  Basic shadowing technique for Toy Story, etc.

§  HW 1 examples

Phase 1: Render from Light

§  Depth image from light source

Phase 1: Render from Light

§  Depth image from light source

Phase 2: Render from Eye

§  Standard image (with depth) from eye

Eye

Phase 2+: Project to light for shadows

§  Project visible points in eye view back to light source

Eye

(Reprojected) depths match for light and eye. VISIBLE

9

Phase 2+: Project to light for shadows

Eye

(Reprojected) depths from light, eye not the same. BLOCKED!!

§  Project visible points in eye view back to light source

Visualizing Shadow Mapping

§  A fairly complex scene with shadows

the point
light source

Visualizing Shadow Mapping

§  Compare with and without shadows

with shadows without shadows

Visualizing Shadow Mapping

§  The scene from the light’s point-of-view

FYI: from the
eye’’s point-of-view
again

Visualizing Shadow Mapping

§  The depth buffer from the light’s point-of-view

FYI: from the
light’’s point-of-view
again

Visualizing Shadow Mapping

§  Projecting the depth map onto the eye’s view

FYI: depth map for
light’’s point-of-view
again

10

Visualizing Shadow Mapping

§  Comparing light distance to light depth map

Green is
where the

light planar
distance and

the light
depth map

are
approximatel

y equal

Non-green is
where
shadows
should be

Visualizing Shadow Mapping

§  Scene with shadows

Notice how
specular

highlights
never appear

in shadows

Notice how
curved
surfaces cast
shadows on
each other

Hardware Shadow Map Filtering

“Percentage Closer” filtering
§  Normal texture filtering just averages color components
§  Averaging depth values does NOT work
§  Solution [Reeves, SIGGARPH 87]

§  Hardware performs comparison for each sample
§  Then, averages results of comparisons

§  Provides anti-aliasing at shadow map edges
§  Not soft shadows in the umbra/penumbra sense

Hardware Shadow Map Filtering

GL_NEAREST: blocky GL_LINEAR: antialiased edges

Low shadow map resolution
used to heighten filtering artifacts

Problems with shadow maps

§  Hard shadows (point lights only)

§  Quality depends on shadow map resolution
(general problem with image-based techniques)

§  Involves equality comparison of floating point depth
values means issues of scale, bias, tolerance

Reflection Maps

Blinn and Newell, 1976

11

Environment Maps

Miller and Hoffman, 1984

Environment Maps

Interface, Chou and Williams (ca. 1985)

Environment Maps

Cubical Environment Map
180 degree fisheye
Photo by R. Packo

Cylindrical Panoramas

Reflectance Maps

§  Reflectance Maps (Index by N)

§  Horn, 1977

§  Irradiance (N) and Phong (R) Reflection Maps

§  Miller and Hoffman, 1984

Mirror Sphere Chrome Sphere Matte Sphere

Irradiance Environment Maps

Incident Radiance
(Illumination Environment Map)

Irradiance Environment Map

R N

Assumptions

§  Diffuse surfaces

§  Distant illumination

§  No shadowing, interreflection

Hence, Irradiance a function of surface normal

12

Diffuse Reflection

B Eρ=
Radiosity

(image intensity)
Reflectance

(albedo/texture)
Irradiance

(incoming light)

× =

quake light map

Analytic Irradiance Formula

 Lambertian surface
acts like low-pass filter

 Elm = Al Llm

lA

π

2 / 3π

/ 4π

0

Al = 2π (−1)
l
2−1

(l + 2)(l −1)
l!

2l l
2 !()2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

l even

l0 1 2

Ramamoorthi and Hanrahan 01
Basri and Jacobs 01

9 Parameter Approximation

-1 -2 0 1 2

0

1

2

 Ylm(θ ,ϕ)

 x y z

 xy yz 3z2 −1 zx x
2 − y2

 l

 m

Order 0
1 term

RMS error = 25 %

Exact image

9 Parameter Approximation

-1 -2 0 1 2

0

1

2

 Ylm(θ ,ϕ)

 x y z

 xy yz 3z2 −1 zx x
2 − y2

 l

 m

Exact image Order 1
4 terms

RMS Error = 8%

9 Parameter Approximation

-1 -2 0 1 2

0

1

2

 Ylm(θ ,ϕ)

 x y z

 xy yz 3z2 −1 zx x
2 − y2

 l

 m

Exact image Order 2
9 terms

RMS Error = 1%

For any illumination, average
error < 3% [Basri Jacobs 01]

Real-Time Rendering

Simple procedural rendering method (no textures)
§  Requires only matrix-vector multiply and dot-product
§  In software or NVIDIA vertex programming hardware

Widely used in Games (AMPED for Microsoft
Xbox), Movies (Pixar, Framestore CFC, …)

 E(n) = ntMn

surface float1 irradmat (matrix4 M, float3 v) {
 float4 n = {v , 1} ;
 return dot(n , M*n) ;
}

13

Environment Map Summary

§  Very popular for interactive rendering

§  Extensions handle complex materials

§  Shadows with precomputed transfer

§  But cannot directly combine with shadow maps

§  Limited to distant lighting assumption

Resources
§  OpenGL red book (latest includes GLSL)
§  Web tutorials: http://www.lighthouse3d.com/opengl/glsl/

§  Older books: OpenGL Shading Language book (Rost),
The Cg Tutorial, …

§  http://www.realtimerendering.com
§  Real-Time Rendering by Moller and Haines

§  Debevec http://www.debevec.org/ReflectionMapping/
§  Links to Miller and Hoffman original, Haeberli/Segal

§  http://www.cs.ucsd.edu/~ravir/papers/envmap
§  Also papers by Heidrich, Cabral, …

§  Lots of information available on web…

§  Look at resources from CSE 274 website (Wi, Fa 15)

