Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 12
Ravi Ramamoorthi

http://www.cs.ucsd.edu/~ravir

Motivation

Today, create photorealistic computer graphics
Complex geometry, lighting, materials, shadows
Computer-generated movies/special effects (difficult
or impossible to tell real from rendered...)

CSE 168 images from rendering competition (2011)

But algorithms are very slow (hours to days)

Evolution of 3D graphics rendering

Interactive 3D graphics pipeline as in OpenGL
Earliest SGI machines (Clark 82) to today
Most of focus on more geometry, texture mapping
Some tweaks for realism (shadow mapping, accum. buffer)

"-“ R

’A&—\ SGI Reality Engine 93

(Kurt Akeley)

To Do

Assignment 2 due May 18
Should already be well on way.
Contact us for difficulties etc.

Real-Time Rendering

Goal: interactive rendering. Critical in many apps
Games, visualization, computer-aided design, ...
Until 10-15 years ago, focus on complex geometry

o
-

Chasm between interactivity, realism

Offline 3D Graphics Rendering

Ray tracing, radiosity, photon mapping
High realism (global illum, shadows, refraction, lighting,..)
But historically very slow techniques

“So, while you and your children’s children are waiting for ray tracing to take
over the world, what do you do in the meantime?” Real-Time Rendering

» B4

B\

Pictures courtesy Henrik Wann Jensen

New Trend: Acquired Data

Image-Based Rendering: Real/precomputed images as input
Also, acquire geometry, lighting, materials from real world

Easy to obtain or precompute lots of high quality data. But

15 years ago

High quality rendering: ray tracing, global illumination
Little change in CSE 168 syllabus, from 2003 to today

Real-Time rendering: Interactive 3D geometry with simple

. , - texture mapping, fake shadows (OpenGL, DirectX)
how do we represent and reuse this for (real-time) rendering?
Complex environment lighting, real materials (velvet, satin,

paints), soft shadows, caustics often omitted in both

Realism, interactivity at cross purposes

me Game Renderings Today
Vast increase in CPU power, modern instrs (SSE, Multi-Core)

g napr -1-1 —
I = N hardware: NVIDIA Optix)
— I~ oy

Real-time raytracing techniques are possible (even on

Unreal Engine 4

https://www.youtube.com/watch?v=gtHamLNPX 4th generation of graphics hardware is programmable

(First 3 gens were wireframe, shaded, textured)
Modern NVIDIA, ATI cards allow vertex, fragment shaders

Great deal of current work on acquiring and rendering with
realistic lighting, materials... [Especially at UCSD]

Focus on quality of rendering, not quantity of polygons, texture
Digital Ira: NVIDIA, USC

Goals Outline
Overview of basic techniques for high-quality Motivation and Demos
RSl TE (EmE Gng Programmable Graphics Pipeline
Shadow Maps
Survey of important concepts and ideas, but do
not go into details of writing code

Environment Mapping
Some pointers to resources, others on web

One possibility for assignment 3, will need to
think about some ideas on your own

High quality real-time rendering

Photorealism, not just more polygons

Natural lighting, materials, shadows

2l -
]
/

Interiors by architect Frank Gehry. Note rich lighting, ranging
from localized sources to reflections off vast sheets of glass.

High quality real-time rendering
Photorealism, not just more polygons

Natural lighting, materials, shadows

L

small area light, sharp shadows soft and hard shadows
Agrawala et al. 00 Ng et al. 03

Natural lighting creates a mix of soft diffuse and hard shadows.

Applications

Entertainment: Lighting design
Architectural visualization

Material design: Automobile industry
Realistic Video games

Electronic commerce

g \

High quality real-time rendering
Photorealism, not just more polygons

Natural lighting, materials, shadows

Peacock feather

Real materials diverse and not easy to represent by simple
parameteric models. Want to support measured reflectance.

Today: Full Global lllumination

Programmable Graphics Hardware

Programmable Graphics Hardware

* 4 -
NVIDIA a new dawn demo (may need to type URL)
http://www.geforce.com/games-applications/pc-
applications/a-new-dawn/videos

Relit Images

Ng, Ramamoorthi, Hanrahan 04

Avatar 2010, based on Ramamoorthi and Hanrahan 01, Sloan 02

Precomputation-Based Methods

Static geometry
Precomputation
Real-Time Rendering (relight all-frequency effects)

Involves sophisticated representations, algorithms

: Real-Time Relighting

Interactive RayTracing

Advantages
Very complex scenes relatively easy (hierarchical bbox)
Complex materials and shading for free
Easy to add global illumination, specularities etc.

Disadvantages
Hard to access data in memory-coherent way
Many samples for complex lighting and materials
Global illumination possible but expensive

Modern developments: Leverage power of modern CPUs,
develop cache-aware, parallel implementations

https://www.youtube.com/watch?v=kcP1NzB49zU

Sparse Sampling, Reconstruction

Same algorithm as offline Monte Carlo rendering

But with smart sampling and filtering (current work)

Outline

Motivation and Demos
Programmable Graphics Pipeline
Shadow Maps

Environment Mapping

Geometry or Vertex Pipeline

Model, View
Transform

These fixed function stages can be replaced by a general per-vertex
calculation using vertex shaders in modern programmable hardware

Sparse Sampling, Reconstruction

Basic Hardware Pipeline

CPU

IV
Sl

Create geometry, lights,
materials, textures,

cubemaps, ... as inputs
g Per-pixel (per-fragment)

operations

Pixel or Fragment Pipeline

Rasterizati Texture = o
(scan conversion) Mapping rame uffer

These fixed function stages can be replaced by a general per-fragment
calculation using fragment shaders in modern programmable hardware

OpenGL Rendering Pipeline

Programmable in

Modern GPUs Programmable in

(Vertex Shader) Modern GPUs
Geometry (Fragment
Primitive Shadsr)
Operations

Traditional Approach: Fixed function pipeline (state machine)

New Development (2003-): Programmable pipeline

Shading guages
Vertex / Fragment shading described by small program
Written in language similar to C but with restrictions

Long history. Cook’ s paper on Shade Trees,
Renderman for offline rendering

Stanford Real-Time Shading Language, work at SGI
Cg from NVIDIA, HLSL

GLSL directly compatible with OpenGL 2.0 (So, you can
just read the OpenGL Red Book to get started)

Shader Initialization Code

GLuint initshaders (GLenum type, const char *filename) {

// Using GLSL shaders, OpenGL book, page 679
GLuint shader = glCreateShader (type) ;
GLint compiled ;
string str = textFileRead (filename) ;
GLchar * cstr = new GLchar[str.size()+l] ;
const GLchar * cstr2 = cstr ; // Weirdness to get a const char
stropy (estr,str.c_str()) ;
glShaderSource (shader, 1, &cstr2, NULL) ;
glCompileShader (shader) ;
glGetShaderiv (shader, GL_COMPILE STATUS, &compiled) ;
if (!compiled) {
shadererrors (shader) ;
throw 3 ;
}

return shader ;

Jayngawe.

Simplified OpenGL Pipeline

User specifies vertices (vertex buffer object)

For each vertex in parallel
OpenGL calls user-specified vertex shader:
Transform vertex (ModelView, Projection), other ops

For each primitive, OpenGL rasterizes

Generates a fragment for each pixel the fragment covers

For each fragment in parallel
OpenGL calls user-specified fragment shader:
Shading and lighting calculations

OpenGL handles z-buffer depth test unless overwritten

Modern OpenGL is “lite” basically just a rasterizer
“Real” action in user-defined vertex, fragment shaders

Shader Setup

Initializing (shader itself discussed later)
Create shader (Vertex and Fragment)
Compile shader

Attach shader to program

Link program

Use program

Shader source is just sequence of strings

Similar steps to compile a normal program

Linking Shader Program

GLuint initprogram (GLuint vertexshader, GLuint fragmentshader)
{
GLuint program = glCreateProgram() ;
GLint linked ;
glAttachShader (program, vertexshader) ;
glAttachShader (program, fragmentshader) ;
glLinkProgram(program) ;
glGetProgramiv (program, GL_LINK STATUS, &linked) ;
if (linked) glUseProgram(program) ;
else {
programerrors (program) ;
throw 4 ;
}

return program ;

Phong Shader: Vertex

\\
*Gives eye space location for v |
*Transform Surface Normal
*Transform Vertex Location

varying vec3 N;
varying vec3 v;

void main(void)
{
v = vec3(gl_ModelViewMatrix * gl_Vertex); Created For Use
N = normalize(gl_NormalMatrix * gl_Normal); | Within Frag Shader

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
} (Update OpenGL Built-in Variable for Vertex Position|

Cliff Lindsay web.cs.wpi.edu/~rich/courses/imgd4000-d09/lectures/gpu.pdf

Fragment Shader Compute Lighting

vecd4 ComputeLight (const in vec3 direction, const in vecd
lightcolor, const in vec3 normal, const in vec3 halfvec, const
in vec4 mydiffuse, const in vec4 myspecular, const in float
myshininess) {

float nDotL = dot(normal, direction)
vec4 lambert = mydiffuse * lightcolor * max (nDotL, 0.0) ;

float nDotH = dot(normal, halfvec) ;

vecd phong = myspecular * lightcolor * pow (max(nDotH, 0.0),
myshininess) ;

vecd retval = lambert + phong ;

return retval ;

Shadow and Environment Maps

Basic methods to add realism to interactive rendering

Shadow maps: image-based way hard shadows
Very old technique. Originally Williams 78
Many recent (and older) extensions
Widely used even in software rendering (RenderMan)
Simple alternative to raytracing for shadows

Environment maps: image-based complex lighting
Again, very old technique. Blinn and Newell 76
Huge amount of recent work (some covered in course)

Together, give most of realistic effects we want
But cannot be easily combined!!
See Annen 08 [real-time all-frequency shadows dynamic
scenes] for one approach: convolution soft shadows

] Passed in From VS
void main (void)
{

/I we are in Eye Coordinates, so EyePos is (0,0,0)
vec3 L = _l position.xyz - y).
vec3 E = normalize(-v);

vec3 R = normalize(-reflect(L,N)):

/lcalculate Ambient Term:
vecd lamb = gl_FrontLightProduct[0].ambient;

/lcalculate Diffuse Term:
vec4 Idiff = gl_Frontl diffuse *

/I calculate Specular Term:
vec4 Ispec = gl_FrontLightProduct{[0].specular
. E),0.0), gl_|

/I write Total Color:
gl_FragColor = gl_FrontLightModelProduct.sceneColor + lamb «+ Idiff + Ispec;
p— T

Cliff Lindsay web.cs.wpi.edu/~rich/courses/imgd4000-d09/lectures/gpu.pdf

Outline

Motivation and Demos
Programmable Graphics Pipeline
Shadow Maps

Environment Mapping

Discuss Assignment 2, due date

Common Real-time Shadow Techniques

Projected Shadow

P:ir;ar H volumes
shadows
Hybrid

G approaches
kg | PP

Light maps
This slide, others courtesy Mark Kilgard

Problems

Mostly tricks with lots of limitations

Projected planar shadows
works well only on flat surfaces

Stenciled shadow volumes
determining the shadow volume is hard work

Light maps
totally unsuited for dynamic shadows

In general, hard to get everything shadowing everything

Phase 1: Render from Light

Depth image from light source

o3

Phase 2: Render from Eye

Standard image (with depth) from eye

o3
AN

Shadow Mapping

Lance Williams: Brute Force in image space
(shadow maps in 1978, but other similar ideas like
Z buffer, bump mapping using textures and so on)

Completely image-space algorithm
no knowledge of scene’ s geometry is required
must deal with aliasing artifacts

Well known software rendering technique

Basic shadowing technique for Toy Story, etc.
HW 1 examples

Phase 1: Render from Light

Depth image from light source

3t
AN

Phase 2+: Project to light for shadows

Project visible points in eye view back to light source

3E
AN

(Reprojected) depths match for light and eye. VISIBLE

Phase 2+: Project to light for shadows

Project visible points in eye view back to light source

o3

(Reprojected) depths from light, eye not the same. BLOCKED!!

Visualizing Shadow Mapping

Compare with and without shadows

with shadows without shadows

Visualizing Shadow Mapping

The depth buffer from the light’ s point-of-view

FYI: from the
light”s point-of-view:
again

Visualizing Shadow Mapping

A fairly complex scene with shadows

the point
light source

Visualizing Shadow Mapping

The scene from the light” s point-of-view

FYI: from the
eye’s point-of-view
again

Visualizing Shadow Mapping

Projecting the depth map onto the eye’ s view

FYI: depth map for
light’s point-of-view
again

Visualizing Shadow Mapping

Comparing light distance to light depth map

Green is
where the
light planar
distance and
the light
depth map
are
approximatel
y equal

Non-green is
where
shadows
should be

Hardware Shadow Map Filtering

“Percentage Closer” filtering
Normal texture filtering just averages color components
Averaging depth values does NOT work
Solution [Reeves, SIGGARPH 87]
Hardware performs comparison for each sample
Then, averages results of comparisons
Provides anti-aliasing at shadow map edges
Not soft shadows in the umbra/penumbra sense

Problems with shadow maps

Hard shadows (point lights only)

Quality depends on shadow map resolution
(general problem with image-based techniques)

Involves equality comparison of floating point depth
values means issues of scale, bias, tolerance

Visualizing Shadow Mapping

Scene with shadows

Notice how \ Notice how
specular = curved
highlights surfaces cast

never appear shadows on
in shadows each other

Hardware Shadow Map Filtering

Low shadow map resolution
used to heighten filtering artifacts

Reflection Maps

Blinn and Newell, 1976

10

Environment Maps Environment Maps

m;‘:i“\\:;l '}J_A

Miller and Hoffman, 1984
Interface, Chou and Williams (ca. 1985)

Environment Maps Reflectance Maps
T

Reflectance Maps (Index by N)
Horn, 1977

Irradiance (N) and Phong (R) Reflection Maps
Miller and Hoffman, 1984

180 degree fisheye

Mirror Sphere Chrome Sphere Matte Sphere
Cubical Environment Map Photo by R. Packo B

Irradiance Environment Maps Assumptions

R
/ Diffuse surfaces
~

"’ E Distant illumination

Q) No shadowing, interreflection
’*’ Y
Hence, Irradiance a function of surface normal

Incident Radiance Irradiance Environment Map
(lllumination Environment Map)

Diffuse Reflection

B=pE
P

Radiosity Reflectance Irradiance
(image intensity) (albedo/texture) (incoming light)

X

quake light map

9 Parameter Approximation

RMS error = 25 %

N |:| Y,,(6.9)
1
1 y z X

9 Parameter Approximation

Order 2
9 terms

RMS Error = 1%

For any illumination, average
error < 3% [Basri Jacobs 01]

Analytic Irradiance Formula

Lambertian surface
acts like low-pass filter

Elm = Al le

Ramamoorthi and Hanrahan 01 b
Basri and Jacobs 01 4 L even

9 Parameter Approximation

Order 1
4 terms

RMS Error = 8%

Real-Time Rendering

Simple procedural rendering method (no textures)

Requires only matrix-vector multiply and dot-product

In software or NVIDIA vertex programming hardware
Widely used in Games (AMPED for Microsoft
Xbox), Movies (Pixar, Framestore CFC, ...)

12

Environment Map Summary

Very popular for interactive rendering
Extensions handle complex materials

Shadows with precomputed transfer

But cannot directly combine with shadow maps

Limited to distant lighting assumption

Resources

OpenGL red book (latest includes GLSL)

Web tutorials: http://www.lighthouse3d.com/opengl/gisl/

Older books: OpenGL Shading Language book (Rost),
The Cg Tutorial, ...

http://www.realtimerendering.com
Real-Time Rendering by Moller and Haines

Debevec http://www.debevec.org/ReflectionMapping/
Links to Miller and Hoffman original, Haeberli/Segal

http://www.cs.ucsd.edu/~ravir/papers/envmap
Also papers by Heidrich, Cabral, ...

Lots of information available on web...
Look at resources from CSE 274 website (Wi, Fa 15)

13

