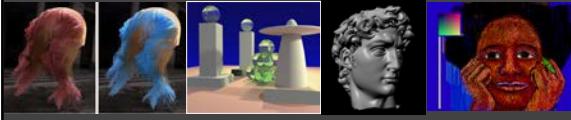


Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 10

Ravi Ramamoorthi

<http://www.cs.ucsd.edu/~ravir>



To Do

- Assignment 2 due May 18
 - Should already be well on way.
 - Contact us for difficulties etc.
 - This lecture is a "bonus": more advanced topic that is closer to the research frontier

Subdivision

- Was a very hot topic in computer graphics
- Brief survey lecture, quickly discuss ideas
- Detailed study quite sophisticated
 - See some of materials from readings

Advantages

- Simple (only need subdivision rule)
- Local (only look at nearby vertices)
- Arbitrary topology (since only local)
- No seams (unlike joining spline patches)

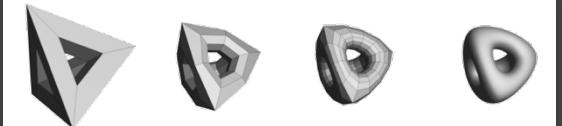
Video: Geri's Game ([outside link](#))

Outline

- *Basic Subdivision Schemes*
- Analysis of Continuity
- Exact and Efficient Evaluation (Stam 98)

Subdivision Surfaces

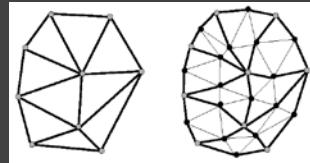
- Coarse mesh & subdivision rule
 - Smooth surface = limit of sequence of refinements



[Zorin & Schröder]

Key Questions

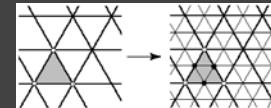
- How to refine mesh?
- Where to place new vertices?
 - Provable properties about limit surface



[Zorin & Schröder]

Loop Subdivision Scheme

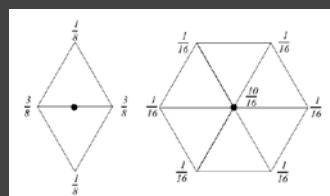
- How refine mesh?
- Refine each triangle into 4 triangles by splitting each edge and connecting new vertices



[Zorin & Schröder]

Loop Subdivision Scheme

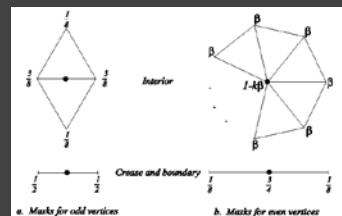
- Where to place new vertices?
 - Choose locations for new vertices as weighted average of original vertices in local neighborhood



[Zorin & Schröder]

Loop Subdivision Scheme

- Where to place new vertices?
 - Rules for *extraordinary vertices* and *boundaries*:



[Zorin & Schröder]

Loop Subdivision Scheme

Choose β by analyzing continuity of limit surface

- Original Loop

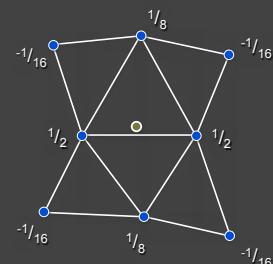
$$\beta = \frac{1}{n} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n} \right)^2 \right)$$

- Warren

$$\beta = \begin{cases} \frac{3}{8n} & n > 3 \\ \frac{3}{16} & n = 3 \end{cases}$$

Butterfly Subdivision

- Interpolating subdivision: larger neighborhood



Modified Butterfly Subdivision

Need special weights near extraordinary vertices

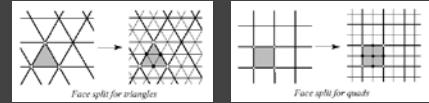
- For $n = 3$, weights are $5/12, -1/12, -1/12$
- For $n = 4$, weights are $3/8, 0, -1/8, 0$
- For $n \geq 5$, weights are

$$\frac{1}{n} \left(\frac{1}{4} + \cos \frac{2\pi j}{n} + \frac{1}{2} \cos \frac{4\pi j}{n} \right), j = 0..n-1$$

- Weight of extraordinary vertex = $1 - \sum$ other weights

A Variety of Subdivision Schemes

- Triangles vs. Quads
- Interpolating vs. approximating



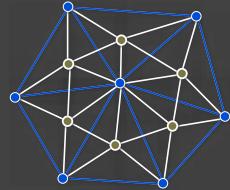
	Face split	Quad. meshes
Approximating	Loop (C^2)	Catmull-Clark (C^2)
Interpolating	Mod. Butterfly (C^1)	Kobbelt (C^1)

Vertex split
Doo-Sabin, Midedge (C^1) Biquadratic (C^2)

[Zorin & Schröder]

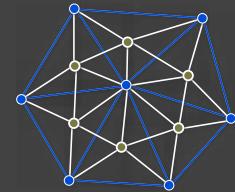
More Exotic Methods

- Kobbelt's subdivision:



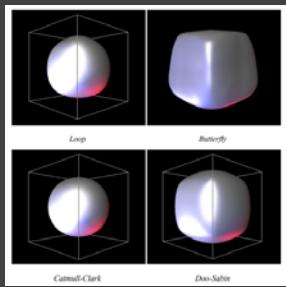
More Exotic Methods

- Kobbelt's subdivision:



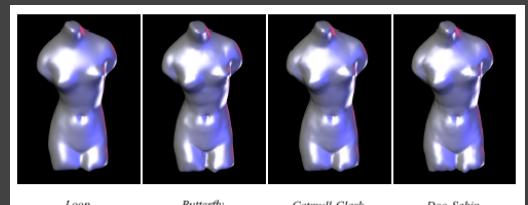
- Number of faces *triples* per iteration: gives finer control over polygon count

Subdivision Schemes



[Zorin & Schröder]

Subdivision Schemes



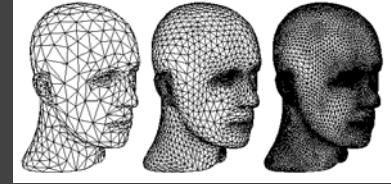
[Zorin & Schröder]

Outline

- Basic Subdivision Schemes
- *Analysis of Continuity*
- Exact and Efficient Evaluation (Stam 98)

Analyzing Subdivision Schemes

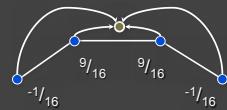
- Limit surface has provable smoothness properties



[Zorin & Schröder]

Analyzing Subdivision Schemes

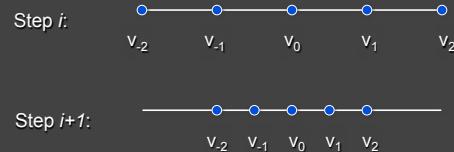
- Start with curves: 4-point interpolating scheme



(old points left where they are)

4-Point Scheme

- What is the support?



So, 5 new points depend on 5 old points

Subdivision Matrix

- How are vertices in neighborhood refined?
(with vertex renumbering like in last slide)

$$\begin{pmatrix} v_{-2}^{(i+1)} \\ v_{-1}^{(i+1)} \\ v_0^{(i+1)} \\ v_1^{(i+1)} \\ v_2^{(i+1)} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ -\frac{1}{16} & \frac{9}{16} & \frac{9}{16} & -\frac{1}{16} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{1}{16} & \frac{9}{16} & \frac{9}{16} & -\frac{1}{16} \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} v_{-2}^{(i)} \\ v_{-1}^{(i)} \\ v_0^{(i)} \\ v_1^{(i)} \\ v_2^{(i)} \end{pmatrix}$$

Subdivision Matrix

- How are vertices in neighborhood refined?
(with vertex renumbering like in last slide)

$$\bar{\mathbf{V}}^{(i+1)} = \mathbf{S} \bar{\mathbf{V}}^{(i)}$$

$$\text{After } n \text{ rounds: } \bar{\mathbf{V}}^{(n)} = \mathbf{S}^n \bar{\mathbf{V}}^{(0)}$$

Convergence Criterion

$$\bar{\mathbf{V}}^{(n)} = \mathbf{S}^n \bar{\mathbf{V}}^{(0)}$$

Expand in eigenvectors of \mathbf{S} :

$$\mathbf{S} = \sum_{i=0}^4 \lambda_i \mathbf{e}_i \mathbf{e}_i^T$$

$$\bar{\mathbf{V}}^{(0)} = \sum_{i=0}^4 a_i \mathbf{e}_i$$

$$\bar{\mathbf{V}}^{(n)} = \sum_{i=0}^4 a_i \lambda_i^n \mathbf{e}_i$$

Criterion I: $|\lambda_i| \leq 1$

Convergence Criterion

- What if all eigenvalues of \mathbf{S} are < 1 ?

- All points converge to 0 with repeated subdivision

Criterion II: $\lambda_0 = 1$

Translation Invariance

- For any translation t , want:

$$\begin{pmatrix} \mathbf{v}_{-2}^{(i+1)} + t \\ \mathbf{v}_{-1}^{(i+1)} + t \\ \mathbf{v}_0^{(i+1)} + t \\ \mathbf{v}_1^{(i+1)} + t \\ \mathbf{v}_2^{(i+1)} + t \end{pmatrix} = \mathbf{S} \begin{pmatrix} \mathbf{v}_{-2}^{(i)} + t \\ \mathbf{v}_{-1}^{(i)} + t \\ \mathbf{v}_0^{(i)} + t \\ \mathbf{v}_1^{(i)} + t \\ \mathbf{v}_2^{(i)} + t \end{pmatrix}$$

$$\bar{\mathbf{V}}^{(i+1)} + t\bar{1} = \mathbf{S}(\bar{\mathbf{V}}^{(i)} + t\bar{1})$$

$$\mathbf{S}\bar{1} = \bar{1}$$

Criterion III: $\mathbf{e}_0 = 1$, all other $|\lambda_i| < 1$

Smoothness Criterion

- Plug back in: $\bar{\mathbf{V}}^{(n)} = a_0 \mathbf{e}_0 + \sum_{i=1}^4 a_i \lambda_i^n \mathbf{e}_i$

- Dominated by largest λ_i

- Case 1: $|\lambda_1| > |\lambda_2|$

$$\bar{\mathbf{V}}^{(n)} = a_0 \mathbf{e}_0 + a_1 \lambda_1^n \mathbf{e}_1 + (\text{small})$$

- Group of 5 points gets shorter
- All points approach multiples of $\mathbf{e}_1 \rightarrow$ on a straight line
- Smooth!

Smoothness Criterion

- Case 2: $|\lambda_1| = |\lambda_2|$
 - Points can be anywhere in space spanned by $\mathbf{e}_1, \mathbf{e}_2$
 - No longer have smoothness guarantee

Criterion IV: Smooth iff $\lambda_0 = 1 > |\lambda_1| > |\lambda_2|$

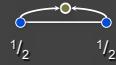
Continuity and Smoothness

- So, what about 4-point scheme?

- Eigenvalues = $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}$
- $\mathbf{e}_0 = 1$
- Stable ✓
- Translation invariant ✓
- Smooth ✓

2-Point Scheme

- In contrast, consider 2-point interpolating scheme



- Support = 3
- Subdivision matrix =
$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Continuity of 2-Point Scheme

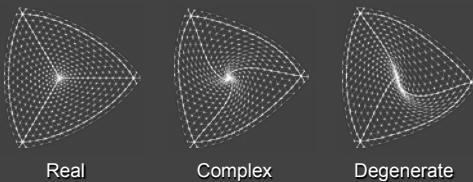
- Eigenvalues = 1, $\frac{1}{2}$, $\frac{1}{2}$
- $\mathbf{e}_0 = \mathbf{1}$
- Stable ✓
- Translation invariant ✓
- Smooth ✗
 - Not smooth; in fact, this is piecewise linear

For Surfaces...

- Similar analysis: determine support, construct subdivision matrix, find eigenstuff
 - Caveat 1: separate analysis for each vertex valence
 - Caveat 2: consider more than 1 subdominant eigenvalue
- Reif's smoothness condition: $\lambda_0 = 1 > |\lambda_1| \geq |\lambda_2| \geq |\lambda_3|$
- Points lie in subspace spanned by \mathbf{e}_1 and \mathbf{e}_2
 - If $|\lambda_1| \neq |\lambda_2|$, neighborhood stretched when subdivided, but remains 2-manifold

Fun with Subdivision Methods

Behavior of surfaces depends on eigenvalues



(recall that symmetric matrices have real eigenvalues)

[Zorin]

Outline

- Basic Subdivision Schemes
- Analysis of Continuity
- Exact and Efficient Evaluation (Stam 98)*

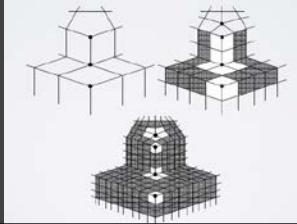
Slides courtesy James O'Brien

Practical Evaluation

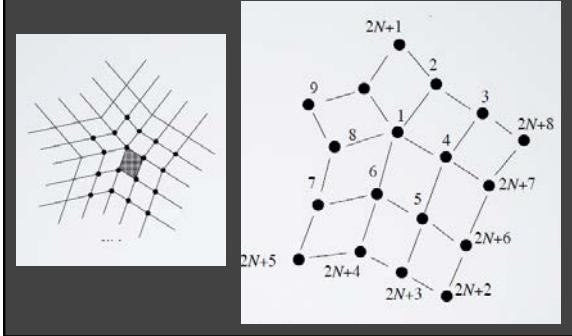
- Problems with Uniform Subdivision
 - Exponential growth of control mesh
 - Need several subdivisions before error is small
 - Ok if you are “drawing and forgetting”, otherwise ...
- (Exact) Evaluation at arbitrary points
- Tangent and other derivative evaluation needed
- Paper by Jos Stam SIGGRAPH 98 efficient method
 - Exact evaluation (essentially take out “subdivision”)
 - Smoothness *analysis* methods used to *evaluate*

Isolated Extraordinary Points

- After 2+ subdivisions, isolated “extraordinary” points where irregular valence
- Regular region is usually easy
 - For example, Catmull Clark can treat as B-Splines

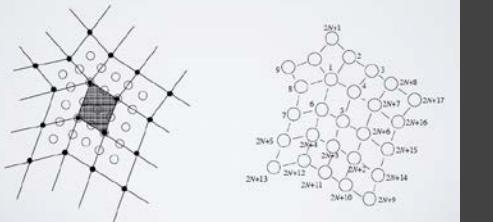


Isolated Extraordinary Points



Subdivision Matrix

$$\mathbf{C}_1 = \mathbf{A}\mathbf{C}_0.$$

$$\mathbf{C}_n = \mathbf{A}\mathbf{C}_{n-1} = \mathbf{A}^n \mathbf{C}_0$$


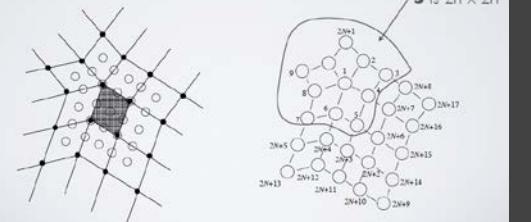
Subdivision Matrix

$$\mathbf{C}_1 = \mathbf{A}\mathbf{C}_0.$$

$$\mathbf{C}_n = \mathbf{A}\mathbf{C}_{n-1} = \mathbf{A}^n \mathbf{C}_0$$

$$\mathbf{A} = \begin{pmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{S}_{11} & \mathbf{S}_{12} \end{pmatrix}$$

\mathbf{S} is $2n \times 2n$



Eigen Space

$$\mathbf{C}_1 = \mathbf{A}\mathbf{C}_0.$$

$$\mathbf{C}_n = \mathbf{A}\mathbf{C}_{n-1} = \mathbf{A}^n \mathbf{C}_0$$

$$\mathbf{A} = \begin{pmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{S}_{11} & \mathbf{S}_{12} \end{pmatrix}$$

$$\mathbf{AV} = \mathbf{V}\Lambda \implies \mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1}$$

$$\bar{\mathbf{C}}_n = \bar{\mathbf{A}}\mathbf{A}^{n-1}\mathbf{C}_0 = \bar{\mathbf{A}}\mathbf{V}\Lambda^{n-1}\mathbf{V}^{-1}\mathbf{C}_0$$

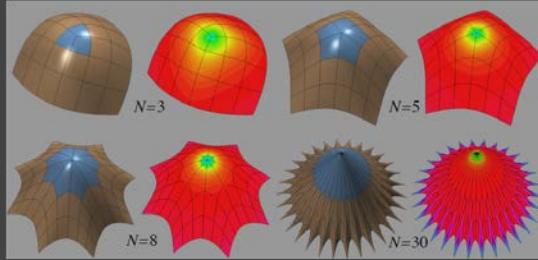
$$\mathbf{s}_{k,n}(u, v) = \hat{\mathbf{C}}_0^T \Lambda^{n-1} (\mathbf{P}_k \bar{\mathbf{A}} \mathbf{V})^T \mathbf{b}(u, v)$$

Only depends on valence of extraordinary vertex.

Comments

- Computing Eigen-Vectors is tricky
 - See Jos' paper for details
 - He includes solutions for valence up to 500
- All eigenvalues are (abs) less than one
 - Except for lead value which is exactly one
 - Well defined limit behavior
- Exact evaluation allows “pushing to limit surface”

Curvature Plots



See Stam 98 for details

Summary

- Advantages:

- Simple method for describing complex, smooth surfaces
- Relatively easy to implement
- Arbitrary topology
- Local support
- Guaranteed continuity
- Multiresolution

- Difficulties:

- Intuitive specification
- Parameterization
- Intersections

[Pixar]