
CSE 163: Assignment 1—Image and Signal Processing

Ravi Ramamoorthi

The purpose of this assignment is to implement some basic image processing operations, such as those
found in programs like Photoshop or ImageMagick. This includes basic things like brightening, gamma
correcting and cropping, as well as more advanced operations like antialiased shifting and resizing. The best
reference will be the material in lecture. The assignment description is intended to be fairly complete in
terms of specifying what you need to do.

1 Turning in the Assignment

You will turn in the assignment by creating a website. This should include a complete description or writeup
showcasing your results. For each implemented operation, show us 2 to 3 examples of applying that operation
with different parameters on at least one image. For completeness, you should indicate any nonstandard
implementation issues you found, any hardcoded parameters etc. This is part of the assignment; some points
are allocated for the quality of the writeup. Failure to fully document the results of your program will make
the graders very unhappy. Being honest, noting what works and what doesn’t work for all the features will
make the assignment easy to grade and make us very happy. That said, the purpose of the assignment is to
have fun; we will try not to be too harsh on technicalities. Your website should also include downloadable
executable code. We may request you for source code if required to evaluate your program but please do not
post your source code publicly on your website or on public github repositories. It is also not permitted to
copy source code from previous instances of this or a similar class. Do not modify the website after the due
date of the assignment. Also, send an e-mail to the instructor/TA before the due date with the link to your
website, and a zip file containing your source and executables. Please note that many mailing programs do
not allow .zip files; if this is an issue, please rename to .foo

You may (and are encouraged to) work in groups of two for the assignment. Only one assignment needs
to be handed in. The requirements remain the same if you work alone, though we will give some allowance
in terms of assigning the final grades if you need to work alone.

2 Support

For your benefit, we provide skeleton code for parsing arguments, so you need only worry about the actual
image processing. It is not required to use the skeleton code we provide, and you could write the entire
implementation from scratch if you prefer, but you must then implement equivalent support functionality.

In principle, you should only need to add code to the regions indicated as such, though you will need to
understand the skeleton at some level, and it is ok to modify it if you feel that to be necessary. To keep things
simple, everything will be executed on the command line; there is no user interface or OpenGL required for
this assignment. By command line, we mean the old cmd.exe (DOS shell) in Windows (or equivalent under
Visual Studio), not the new Power Shell. For MacOS users, we mean a standard Unix Terminal. We work
only with Windows uncompressed 24 bit bmp files. Some are provided with the assignment. You can obtain
others by googling or converting from other formats. The important files included in the skeleton are:

1

1. main.cpp parses the command line, calling the functions you write

2. image.cpp , image.h Image processing with stubs for the assignment

3. pixel.cpp , pixel.h Pixel processing functions

4. vector.cpp, vector.h A simple 2D vector class that you may or may not find useful

5. bmp.cpp, bmp.h Functions to read and write Windows bmp files that you probably don’t need to bother
about (which is the main point of providing you this skeleton code)

6. Makefile A Unix Makefile, that should also work from the command line for MacOS (Unix/MacOS
only).

Please note that the images, source and headers are all in their individual sub-directories, and for Win-
dows, a Visual Studio Project is provided. If you run into difficulties, please contact the instructor or
TA/tutor immediately.

The first step after downloading the files is to make sure the assignment compiles and runs on your
platform. You might try writing the simplest filter (probably gamma correction) to make sure you won’t
run into trivial technical problems later on.

In addition, we provide our example solution (this is an old Windows exe; it should be able to be run in
emulators like wine on other platforms). Please note the correct way to run this in Windows (courtesy of a
student in last year’s class): (1) Run the cmd console in windows (old DOS shell). (2) Using the command
cd, switch to the folder where solution.exe is located at. (Another trick instead of step 1 and 2 is to press
shift then right click on the folder, select ”Open Command Window here”). (3) Type solution.exe -gamma
1.7 < wave.bmp > out.bmp or whatever operation you want to run. Make sure the image files are in the
same folder of solution.exe.

An important caveat is that image processing programs of this complexity are unlikely to agree completely,
given the number of assumptions and implementation issues involved. So, take the solution as a guideline;
we will not be harsh on technicalities. Also, it is entirely possible that the sample solution has bugs. (In
particular, there is a minor bug with random dithering that was pointed out last year). Any group pointing
out a new significant bug (and providing a correct implementation) will be awarded 2 points for each such
bug report.

The user interface for the program is simple and works as follows:

1. image -gamma 1.7 < in.bmp > out.bmp
This calls the program with the argument -gamma for gamma correction with parameter 1.7. The
input image (in.bmp) is taken from standard input and the output is written to standard output
(hence redirected here to out.bmp).

2. image -help
Lists all of the commands and the arguments used for them. This is also documented in the ensuing
sections that define the assignment.

3. image -gamma 1.5 -size 300 300 < in.bmp > out.bmp
In general, commands are processed in the order they are found. For example, this first gamma corrects
the image and then resizes it.

Acknowledgement: The skeleton code for this assignment (and some parts of the requirements) is
adapted from a similar assignment developed for Princeton’s COS 426 graphics course.

2

3 What you need to implement

You need to implement a number of image processing functions that have been left blank in the skeleton
code. This section defines the assignment carefully, along with point values allotted to each section. In
general, get the simplest filters working first (the assignment is loosely ordered by the difficulty of the filters)
and gradually get the more complicated ones working. Remember to START EARLY. You have plenty of
time to do the assignment, but it might become difficult if you start at the last moment, since there are a
fair number of requirements. You are also encouraged to carefully read through the whole assignment first
before starting, especially if you do the requirements out of order.

3.1 General: Writeup and Program Behavior (7 points)

7 points in this assignment will be allocated for a simple and clear writeup. You will also lose points if
your program behaves poorly. By this I mean you should gracefully terminate rather than crashing when
presented input you are not expecting. It is ok to make assumptions about the input or correct it if wrong in
boundary cases (blur width larger than image size, even size kernels rather than odd, unreasonable parameter
values), but you should try to do something reasonable or terminate gracefully with an error message rather
than crash. We are not going to try deliberately to crash your program or look to be harsh on the writeup,
but the above are simply good design principles, to also be followed for the remainder of the course.

3.2 Basic Operations (10 points)

You should implement the following very basic image processing operations. You are encouraged to get these
simple examples working first before starting on the more complicated examples described next. Getting these
working will also give you an idea of some of the skeleton code and how some of the built in pixel processing
functions can be useful. In general, for all of the operations in this assignment, except edge detection, and
to some extent, finding luminance values in the examples below, you will operate independently on the three
color channels, red, green and blue.

1. Image::Brighten (double factor)
image -brightness < factor >

This brightens the image. The factor should be non-negative. A factor of 1.0 preserves the current im-
age, 0.0 makes it black and other factors simply scale the pixel values up (darkening for values less than
1 and brightening for larger values). One way of looking at this is as linear interpolation with a black
image. Consult the Graphica Obscura website at http://www.graficaobscura.com/interp/index.html for
a description of this and the next two operations as interpolation and extrapolation. Your writeup
should include a sequence of images (along with the original) for different parameters applied to the
same image, as on the graphica obscura website.

2. Image::ChangeContrast (double factor)
image -contrast < factor >

This changes the contrast of the image. Again, refer to the Graphica Obscura website. You must first
compute a constant gray image with the average image luminance (note the pixel Luminance function
provided in the skeleton code; this is also generally useful for converting a color image to grayscale).
Then, you simply need to interpolate from this gray image instead of black as in the previous example.
A parameter value of 0 produces a grey image with no contrast, 1 gives the original image, between 0
and 1 loses contrast, greater than 1 increases contrast, and less than 0 (unlike the previous example,
this part allows for negative values) inverts the image. Once again, look at the graphica obscura website
for an example of what your writeup should look like.

3. Image::ChangeSaturation (double factor)
image -saturation < factor >

This is very similar to the previous example, except that the grey image used for interpolation is no
longer constant, but is simply a grayscale version of the original. For values between 0 and 1, we make
the image grayer, reducing the saturation of the colors. For larger values, we extrapolate increasing

3

saturation. And for negative values, we invert the hues or colors of the input image, like a photographic
negative. Once again, refer to the graphica obscura website, producing images and a writeup like it.

4. Image::ChangeGamma (double factor)
image -gamma < γ >

This implements gamma correction of the image. For each pixel, you simply need to implement the
formula Cnew = C

1/γ
old , where Cnew is the new color and Cold is the old or original color. The value

of the gamma factor should be positive. A value of 1 leaves the image unchanged, values greater
than 1 brighten it, and lower values darken it. Gamma correction of images is needed to account for
nonlinearities in the display device and was discussed in class.

5. Image::Crop (int x, int y, int w, int h)
image -crop x y w h

This allows one to crop the image, for instance to focus on someone’s face. We assume that x ranges
from 0 to width-1 from left to right and y from 0 to height-1 from top to bottom. All parameters must
be positive. w and h are the size of the cropped image. Show at least one example of cropping an
image to focus on some interesting aspect in your writeup.

3.3 Quantization and Dithering (10 points)

In this part of the assignment, you will explore various strategies for quantizing images with a small number
of bits. These techniques are used for instance in printing or in limited color displays. Ideally, your writeup
should include a 3×5 table for an appropriate image. The rows of the table represent the 3 quantization and
dithering methods below. The columns of the table represent the number of bits used (going from 1 to 5 is
reasonable). You should clearly see contouring for lower numbers of bits. Random dithering and especially
Floyd-Steinberg should perform significantly better than simple quantization.

1. Image::Quantize (int nbits)
image -quantize < nbits >

This quantizes the image to use nbits per color channel (where nbits lies between 1 and 8). Your writeup
should include examples of an image quantized with increasing numbers of bits. As you decrease the
number of bits, you will see visible contouring as one transitions from one quantum to the next.

To quantize, you need to define a map between the input [0-255] and the output [0-2nbits−1]. A simple
way of doing this is to first convert all values into floating point to lie between 0 and 1 (by dividing
the input by 256). Then, select the quantum using

q = floor(p ∗ b),

where q is the appropriate quantum, p is the original pixel value in the range from 0 to 1, and b is the
number of bins or quanta b = 2nbits. These values must then be mapped back into the 0− 255 range,
which can be done by computing the final color

cf = floor(255 ∗ q/(b− 1)).

As an example of this, consider quantization to 3 bits. In this case, b = 8. Given an initial input color
c, we first compute the required quantum as q = floor(c ∗ 8/256) = floor(c/32). Thus, the range of the
image is divided into steps of size 32, with each element being mapped to one of the quanta from 0 to
7. The final color is then given by cf = (255/7) ∗ floor(c/32). The factor of 255/7 converts the quanta
from 0 to 7 to the range from 0 to 255 for display. Note that there are only 8 discrete intensity values
in the output, and all 255 original input colors are mapped to one of these 8 values.

This is only one possible mapping. It is possible to have fancier mappings that quantize non-linearly,
accounting for gamma issues and nonlinear response in the eye. If you do something nonstandard,
please document it in your writeup.

4

2. Image::RandomDither (int nbits)
image -randomDither < nbits >

Dithering adds some noise before quantizing. Thus, while we must still quantize, the contouring is
somewhat broken up by noise. Perceptually, noise is found to be preferable in most cases. In the
above, when you compute the quantum q, add some noise in the range from [−.5... + .5]. That is,
q = floor(p ∗ b+ noise). The noise is added using the random function.

Please note that there is a trick to this part, in that it is not properly implemented in the solution
program, and so your result will not match it perfectly. (If you are adventurous, you may want to try
to determine what the solution is doing wrong; Hint: Is noise added before or after quantization).

3. Image::FloydSteinbergDither (int nbits)
image -FloydSteinbergDither < nbits >

This is the most advanced algorithm, and is an error diffusion method. The error made in quantizing a
particular pixel is diffused out to pixels later in the process. Specifically, the error is split and diffused
out with the weights

RIGHT : α = 7/16
BOTTOMLEFT : β = 3/16

BOTTOM : γ = 5/16
BOTTOMRIGHT : δ = 1/16.

Important implementation details: In this case, you should try to do something reasonable
(as with much of the rest of the assignment) with edge conditions of pixels on the boundary. One
reasonable approach is to treat the image as toroidal, wrapping around at the edges [this may not be
practical for some error diffusion algorithms]. Another reasonable approach is to use only valid pixels,
but then renormalize at the edges to prevent darkening of edge pixels. In your writeup, please explain
in a sentence or two what you did for both this part, and the later parts of the assignment.

Another important caveat is that the skeleton code deals with RGB values as unsigned chars. Since
you may need negative values here, you should implement things carefully if you want to read the
image in place. Another option is to include a dummy real valued array for the errors.

3.4 Basic Convolution and Edge Detection (10 points)

Here, you will implement some basic convolution filters for simple tasks. See the note above about edge
conditions. You may want to add an auxiliary Convolve function to the image class to implement the
convolutions for arbitrary filters. Alternatively, you may want to make use of the Sample function for this
purpose. I would recommend you start on this after finishing the previous requirements.

1. Image::Blur (int n)
image -blur < n >

Blur the image by using a filter of width n. n should be an odd integer. Your writeup should show
examples of an image blurred with kernels of width 3, 5, 7, 11, 13, 19 or a similar range of values. The
implementation of this is fairly straightforward. You simply need to implement discrete convolution
with a blur filter. In general, for a filter f , the discrete convolution will compute

Inew(a, b) =
∑
x,y

f(x− a, y − b)Iold(x, y).

Of course, the summation needs only be computed for pixels within the width of the filter, centered at
(a, b). This will clearly be more efficient for smaller width kernels. For larger kernels, it is more efficient
to Fourier transform the image and compute the convolution as a multiplication in that domain. This is

5

not required in this assignment; extra credit will be available for those groups implementing convolution
in the Fourier domain—if so, document it extensively in your writeup.

The only remaining question is what blurring kernel function f to use. The sample solution implements
a gaussian blur. Gaussian filters are quite popular. In 1D, they are given by

f(x) =
1√
2πσ

exp
[
−x2

2σ2

]
.

For 2D filters, in general, one simply multiplies the components, f(x, y) = f(x)f(y). The remaining
item is how to choose the filter width σ. I used σ = floor(n/2)/2. The greater the filter width, the
more blurring occurs.

Normalization: The normalization above is correct, but may need to be modified to account for
the fact that you are using a finite approximation to the infinite gaussian. In general, normalization is
very important; otherwise your image will darken or brighten as you apply the filters. If you run into
this problem, check your normalization. Another trick is to simply add up the values in the filter for
each pixel, and normalize appropriately (this automatically takes edge issues into account but might
be inefficient). A quick check is to create a uniform grey image. Any of the filters acting on it should
leave the image unchanged.

Integer arithmetic: You should implement your convolution in integer arithmetic as that would
be simpler and more efficient than operating in floating point. Take your floating point filter above,
and convert it to integers by dividing by the lowest element (furthest from the center) and rounding.
Then, compute an overall normalization by adding up all the filter elements. At the end, you will
divide by this overall normalization. For instance, for n = 3, the filter I get is

f(x, y) =
1
86

 1 7 1
7 54 7
1 7 1

 .

If you do anything nonstandard, like using a different filter, please document it in your writeup. The
notes about normalization and integer arithmetic are important for all of the convolution operations.

2. Image::Sharpen ()
image -sharpen

The opposite of blurring is sharpening. The idea is to bring out high frequencies more (though we
cannot hallucinate information that is missing). For this purpose, you simply need to convolve with a
sharpening filter. The filter I used (this is a fixed 3× 3 filter with no parameters) is

f(x, y) =
1
7

 −1 −2 −1
−2 19 −2
−1 −2 −1

 .

For the writeup, simply show the results of sharpening at least one interesting image.

3. Image::EdgeDetect (int threshold)
image -edgeDetect < threshold >

The idea here is to detect edge pixels in the image, shading those and making the rest of the image
black. Your writeup should indicate all parameters used and should show at least the examples of
running your edge detector on the checkerboard and the wave image that are provided.

Edge detection has been an entire research area, with many methods developed. The approach we will
take is using a Sobel edge detector. First, we convolve the image with a gradient filter to detect regions
of large horizontal or vertical gradients which might be edges. The Sobel filters are

6

fhoriz(x, y) =

 −1 0 1
−2 0 2
−1 0 1

 fvert(x, y) =

 1 2 1
0 0 0
−1 −2 −1

 .

It should be clear that these are simply finite differencing operators to find horizontal and vertical
gradients. An important caveat is that applying the results of these filters can lead to
negative numbers. It may require some implementation to be able to deal with this (the skeleton
code only has unsigned chars).

After convolving, we have horizontal and vertical gradient images that we call Gx and Gy. We then
find a composite gradient image magnitude

G =
√
|Gx|2 + |Gy|2.

In computing this magnitude, you should compute the net luminance at each pixel, from the three
color channels (use the Luminance function in the pixel class).

Finally, the image is thresholded based on the parameter given, to convert it to an edge image. For
purposes of debugging, you may want to visualize the gradient images separately before thresholding.

3.5 Antialiased Scale and Shift (10 points)

We will now implement two key operations—scaling the image, and shifting it by a real (non-integer) value.
A naive approach, such as nearest neighbor sampling, will lead to significant aliasing and jaggies. Your
writeup should include a variety of non-integer scales on the checkerboard, for instance 300×512, 512×300,
300×300 and 800×800. Remember that you need to show these results for all 3 filter types (see below). You
should also show non-integer shifts on the checkerboard. For extra credit, you can create a movie showing
sub-pixel shifts of the image, to see that it varies smoothly. A user interface allowing this in real time would
be even cooler.

Filters: You will implement 3 filters or techniques, based on the value of sampling method for both scale
and resize. This variable can be set by using image -sampling. The first is nearest neighbor or point
reconstruction. You simply pick the nearest point or pixel in the original image to reconstruct each pixel
in the target image. The second is the hat filter, which varies linearly so

f(x) = 1− | x |,

being nonzero only when | x |≤ 1. As usual, 2D filters are constructed by multiplying 1D filters. The third
is the Mitchell reconstruction cubic filter which is slightly more sophisticated,

f(0 ≤| x |< 1) =
1
6
(
7 | x |3 −12 | x |2 +16/3

)
f(1 ≤| x |< 2) =

1
6
(
−7/3 | x |3 +12 | x |2 −20 | x | +32/3

)
.

Please note that this part of the assignment differs from earlier use of filters, in that we now use the
continuous filter values; there are no longer discrete 3× 3 or other kernels.

1. Image* Image::Scale(int sizex, int sizey)
image -size < sizex sizey >

The first operation is to resize the image. The resulting size is in the arguments. It may be simplest to
implement four functions, for MagnifyX, MagnifyY, MinifyX, MinifyY. For a given size, you can call
the appropriate chain of two functions (depending on magnification or minification).

7

Minification: In minification by a factor s < 1, we are replacing an image of width w by one
of width sw, but conceptually with fat pixels of size 1/s. Thus, each pixel must integrate over the
corresponding region in the original image, using the appropriate reconstruction filter f . In other
words, we compute

Inew(a) =
∑
x

f(sx− a)Iold(x).

Of course, we need only sum where |sx − a| is smaller than the filter width. That is the filter can be
considered to be centered at a/s and has width 1/s times the normal filter width. In this case, since
the filter is not necessarily evaluated at an integer location, we will need to use a parametric form, so
you will need to use floating point arithmetic rather than integer.

Magnification: Magnification with s > 1 simply requires interpolating between samples in the
original image to obtain a higher resolution image. We can compute it in much the same way as above,
using

Inew(a) =
∑
x

f(x− a/s)Iold(x),

where the filter width is now the original width. The same filters as for minification should be used.

2. Image::Shift(double sx, double sy)
image -shift < sx sy >

This function shifts the image, based on values of sx and sy. You should check for integers, and
implement different integer and real-valued shifts. For the real-valued shift, one simply needs to use
the formula

Inew(a, b) =
∑
x,y

f(x− a+ sx, y − b+ sy)Iold(x, y).

As before, you need to implement all three filters.

3.6 Fun nonlinear filters (3 points)

Fill in the fun filter to be some kind of nonlinear or non-photorealistic mapping. The goal should be to
produce an interesting image. Extra credit of up to two points will be awarded to the most aesthetic or
artistic images so produced. Your writeup should document briefly what you did. This part of the assignment
is open-ended and so not spelled out in much detail. You can consider projections like fisheye, simple image
rotation or more complicated things. What you do is up to your imagination and initiative.

3.7 Extra credit: Compositing and Morphing (10 points)

The skeleton code includes functions for image compositing and morphing. Filling these in and developing
a good complete system will get you 10 points. Partial credit will be available for partial solutions. For the
compositing, I expect a complete system per Porter and Duff’s SIGGRAPH 84 paper. You should implement
(and document in your writeup) a variety of compositing and alpha matting operations. You should also
include some fun examples like pasting your photograph into an image of famous people, or something
similarly interesting. For the morphing, you should implement Beier-Neely’s SIGGRAPH 92 paper. You
should create a video of several interesting morphs (between people works well as in the famous Michael
Jackson Black or White video). This probably also requires writing at least an auxiliary program or user
interface to draw the line segments. This could make a completely different program as well. To get full
points for the morphing, I would like to see an interactive demo as well as a writeup documenting your user
interface with screenshots.

Remember that you should approach this assignment by starting early and working through it in an
incremental fashion, doing the earliest filters first. Do not attempt the extra credit until you’re absolutely
sure the rest of the assignment is solid. But for those of you who want to have fun, go for it.

8

